热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

ML|自动编码器

ML|自动编码器原文:https://www.geeksfor

ML |自动编码器

原文:https://www.geeksforgeeks.org/ml-auto-encoders/

神经网络的一个典型应用是监督学习。它包括训练数据包含一个输出标签。神经网络试图学习从给定输入到给定输出标签的映射。但是如果输出标签被输入向量本身代替了呢?然后网络将尝试找到从输入到自身的映射。这将是一个平凡映射的恒等式。

但如果不允许网络简单复制输入,那么网络将被迫只捕捉显著特征。这种限制为未知的神经网络开辟了一个不同的应用领域。主要应用是降维和特定数据压缩。

首先在给定的输入上训练网络。该网络试图从它拾取的特征中重构给定的输入,并给出作为输出的输入的近似值。训练步骤包括误差的计算和误差的反向传播。自动编码器的典型架构类似于瓶颈。

自动编码器的示意结构如下:

网络的编码器部分用于编码,有时甚至用于数据压缩目的,尽管与其他通用压缩技术如 JPEG 相比,它不是很有效。编码是通过网络的编码器部分实现的,该部分在每一层中具有数量逐渐减少的隐藏单元。因此,这一部分被迫只提取数据中最重要和最具代表性的特征。网络的后半部分执行解码功能。该部分在每一层中具有越来越多的隐藏单元,因此试图从编码数据中重建原始输入。****

因此,自动编码器是一种无监督学习技术。

*训练用于数据压缩的自动编码器:*对于数据压缩过程,压缩最重要的方面是压缩数据重建的可靠性。这一要求决定了自动编码器的结构是一个瓶颈。

*第一步:对输入数据进行编码*

自动编码器首先尝试使用初始化的权重和偏差对数据进行编码。

*第二步:解码输入数据*

自动编码器试图从编码数据中重建原始输入,以测试编码的可靠性。

*步骤 3:反向传播错误*

在重建之后,计算损失函数以确定编码的可靠性。产生的错误被反向传播。

多次重复上述训练过程,直到达到可接受的重建水平。

在训练过程之后,仅保留自动编码器的编码器部分,以对训练过程中使用的类似类型的数据进行编码。

约束网络的不同方法如下


  • *保持较小的隐藏层:*如果每个隐藏层的大小保持尽可能小,那么网络将被迫只拾取数据的代表性特征,从而对数据进行编码。

  • *正则化:*在该方法中,将损失项添加到成本函数中,这鼓励网络以不同于复制输入的方式进行训练。

  • *去噪:*约束网络的另一种方法是向输入添加噪声,并教网络如何从数据中去除噪声。

  • *调整激活函数:*该方法涉及改变各个节点的激活函数,使得大部分节点处于休眠状态,从而有效减小隐藏层的大小。

自动编码器的不同变体是:-


  • *去噪自动编码器:*这种类型的自动编码器在部分损坏的输入上工作,并训练以恢复原始的未失真图像。如上所述,这种方法是限制网络简单复制输入的有效方法。

  • *稀疏自动编码器:*这种类型的自动编码器通常包含比输入更多的隐藏单元,但一次只允许有几个处于活动状态。这种特性被称为网络的稀疏性。网络的稀疏性可以通过手动调零所需的隐藏单元、调整激活函数或在成本函数中添加损失项来控制。

  • *变分自动编码器:*这种类型的自动编码器对潜在变量的分布做出强假设,并在训练过程中使用随机梯度变分贝叶斯估计器。它假设数据是由定向图形模型生成的,并试图学习条件属性q_{\theta}(z|x)的近似q_{\phi}(z|x),其中\phi\theta分别是编码器和解码器的参数。


推荐阅读
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • #30 序列压缩算法优化与实现
    本文探讨了序列压缩算法的优化与实现,旨在提高数据存储效率和处理速度。通过对现有算法的深入分析,提出了一种新的优化方法,该方法在保持高压缩比的同时,显著降低了计算复杂度。实验结果表明,新方法在多种数据集上均表现出色,具有广泛的应用前景。 ... [详细]
  • 深入解析经典卷积神经网络及其实现代码
    深入解析经典卷积神经网络及其实现代码 ... [详细]
  • 图像分割技术在人工智能领域中扮演着关键角色,其中语义分割、实例分割和全景分割是三种主要的方法。本文对这三种分割技术进行了详细的对比分析,探讨了它们在不同应用场景中的优缺点和适用范围,为研究人员和从业者提供了有价值的参考。 ... [详细]
  • Android目录遍历工具 | AppCrawler自动化测试进阶(第二部分):个性化配置详解
    终于迎来了“足不出户也能为社会贡献力量”的时刻,但有追求的测试工程师绝不会让自己的生活变得乏味。与其在家消磨时光,不如利用这段时间深入研究和提升自己的技术能力,特别是对AppCrawler自动化测试工具的个性化配置进行详细探索。这不仅能够提高测试效率,还能为项目带来更多的价值。 ... [详细]
  • 2019年斯坦福大学CS224n课程笔记:深度学习在自然语言处理中的应用——Word2Vec与GloVe模型解析
    本文详细解析了2019年斯坦福大学CS224n课程中关于深度学习在自然语言处理(NLP)领域的应用,重点探讨了Word2Vec和GloVe两种词嵌入模型的原理与实现方法。通过具体案例分析,深入阐述了这两种模型在提升NLP任务性能方面的优势与应用场景。 ... [详细]
  • 从运维繁忙到屡获殊荣:一位CIO的辉煌转型之路
    企业首席信息官(CIO)常常面临一个棘手的问题:如何有效推动公司的数字化转型?尽管数字化转型已成为企业未来发展的重要共识,但如何具体实施依然是许多CIO面临的重大挑战。在日常运营中,企业需要处理大量的业务问题和制定各种发展规划,这使得数字化转型往往被排在较低的优先级。此外,不断涌现的新问题和新规划也常常打乱原有的计划,进一步增加了转型的难度。 ... [详细]
  • REST与RPC:选择哪种API架构风格?
    在探讨REST与RPC这两种API架构风格的选择时,本文首先介绍了RPC(远程过程调用)的概念。RPC允许客户端通过网络调用远程服务器上的函数或方法,从而实现分布式系统的功能调用。相比之下,REST(Representational State Transfer)则基于资源的交互模型,通过HTTP协议进行数据传输和操作。本文将详细分析两种架构风格的特点、适用场景及其优缺点,帮助开发者根据具体需求做出合适的选择。 ... [详细]
  • 在日常的项目开发中,测试环境和生产环境通常采用HTTP协议访问服务。然而,从浏览器的角度来看,这种访问方式会被标记为不安全。为了提升安全性,当前大多数生产环境已经转向了HTTPS协议。本文将详细介绍如何在Spring Boot应用中配置SSL证书,以实现HTTPS安全访问。通过这一过程,不仅可以增强数据传输的安全性,还能提高用户对系统的信任度。 ... [详细]
  • SSAS入门指南:基础知识与核心概念解析
    ### SSAS入门指南:基础知识与核心概念解析Analysis Services 是一种专为决策支持和商业智能(BI)解决方案设计的数据引擎。该引擎能够为报告和客户端应用提供高效的分析数据,并支持在多维数据模型中构建高性能的分析应用。通过其强大的数据处理能力和灵活的数据建模功能,Analysis Services 成为了现代 BI 系统的重要组成部分。 ... [详细]
  • 揭秘腾讯云CynosDB计算层设计优化背后的不为人知的故事与技术细节
    揭秘腾讯云CynosDB计算层设计优化背后的不为人知的故事与技术细节 ... [详细]
  • AI TIME联合2021世界人工智能大会,共探图神经网络与认知智能前沿话题
    AI TIME携手2021世界人工智能大会,共同探讨图神经网络与认知智能的最新进展。自2018年在上海首次举办以来,WAIC已成为全球AI领域的年度盛会,吸引了众多专家学者和行业领袖参与。本次大会将聚焦图神经网络在复杂系统建模、知识图谱构建及认知智能应用等方面的技术突破和未来趋势。 ... [详细]
  • 不用蘑菇,不拾金币,我通过强化学习成功通关29关马里奥,创造全新纪录
    《超级马里奥兄弟》由任天堂于1985年首次发布,是一款经典的横版过关游戏,至今已在多个平台上售出超过5亿套。该游戏不仅勾起了许多玩家的童年回忆,也成为强化学习领域的热门研究对象。近日,通过先进的强化学习技术,研究人员成功让AI通关了29关,创造了新的纪录。这一成就不仅展示了强化学习在游戏领域的潜力,也为未来的人工智能应用提供了宝贵的经验。 ... [详细]
  • 在一系列的学习与实践后,Jsoup学习笔记系列即将进入尾声。本文详细介绍了如何使用Jsoup实现从Saz文件到Csv格式的数据解析功能。未来,计划将此功能进一步封装,开发成具有用户界面的独立应用程序,以增强其实用性和便捷性。对于希望深入掌握Jsoup技术的开发者,本文提供了宝贵的参考和实践案例。 ... [详细]
  • 利用 PyTorch 实现 Python 中的高效矩阵运算 ... [详细]
author-avatar
博客百度2
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有